6.1 - Introduction to Linear Transformations

Definition: Let *V* and *W* be vector spaces. The function $T : V \rightarrow W$ is called a linear transformation of *V* into *W* if the following two properties are true for all \vec{u} and \vec{v} in *V* for any scalar c:

1. T(u + v) = T(u) + T(v)2. T(cu) = cT(u)Example 1: $T : \mathbb{R}^2 \to \mathbb{R}^2$ $T(v_1v_2) = (2v_1, v_1 + v_2)$ Let $u = (u_1, u_2), v = (v_1, v_2), c \in \mathbb{R}$ 1. $T(u + v) = T(u_1 + v_1, u_2 + v_2)$ $= (2(u_1 + v_1), (u_1 + v_1) + (u_2 + v_2))$ $= (2u_1, u_1 + u_2) + (2v_1, v_1 + v_2)$ = T(u) + T(v)2. $T(cu) = T(c(u_1, u_2))$ $= T(cu_1, cu_2)$ $= (2cu_1, cu_1 + cu_2)$ $= c(2u_1, u_1 + u_2)$ $= cT(u_1, u_2) = cT(u)$

Example 2: If W = V, then *T* is a linear operator. $T: C[0,1] \rightarrow C[0,1]$ $f \rightarrow f'$

T(f+g) = (f+g)' = f' + g' = T(f) + T(g)T(cf) = (cf)' = cf' = cT(f)

Examples of non-linear transformations: $T : \mathbb{R} \to \mathbb{R}$ $x \to x^2$ $T(x+y) = (x+y)^2 \neq (x^2+y^2) = T(x) + T(y)$ So *T* is not a linear transformation.

 $T : \mathbb{R} \to \mathbb{R}$ $x \to x+1$ T(x+y) = x+y+1 T(x) + T(y) = (x+1) + (y+1) = x+y+2 T is not a linear transformation. $T(0) \neq 0$ Theorem: Let *T* be a linear transformation from *V* to *W*, where \vec{u} and \vec{v} are in *V*, the following properties must be true:

1.
$$T(0) = 0$$

2. $T(-v) = -T(v)$
3. $T(u-v) = T(u) - T(v)$
4. If $v = \sum_{i=1}^{n} c_i v_i$ then $T(v) = \sum_{i=1}^{n} c_i T(v_i)$

Proof:

1. T(0+0) = T(0) + T(0) $T(0) = 2T(0) \Rightarrow 0 = T(0)$ 2. T(-v) = -1T(v) = -T(v)3. T(u-v) = T(u + (-v)) = T(u) + T(-v) = T(u) - T(v)

 $T : \mathbb{R} \to \mathbb{R}$ $x \to x^{2}$ $T(-x) = x^{2} = T(x) \neq -T(x)$ So it is not a linear transformation

Theorem: Let *A* be an $m \times n$ matrix. The function *T* defined by T(v) = Av is a linear transformation from \mathbb{R}^n into \mathbb{R}^n .

Examples:

$$\mathbb{R}^{2} \to \mathbb{R}^{2}$$

$$\begin{bmatrix} x \\ y \end{bmatrix} \to \begin{bmatrix} 1 & 2 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x + 2y \\ 2x + 3y \end{bmatrix}$$

$$(x, y) \to (x + 2y, 2x + 3y)$$

Let $T: M_{m,n} \rightarrow M_{n,m}$ $A \rightarrow A^T$ is a linear transformation because $(A + B)^T = A^T + B^T$ $(cA)^T = cA^T$

6.2 - The Kernel and Range of a Linear Transformation

Definition: Let $T : V \to W$ be a linear transformation. Then the set of all vectors $v \in V$ that satisfy T(v) = 0 is called the kernel of *T* and is denoted by ker(*T*).

Example 1: $T : R^2 \to R^3$ (x_1, x_2) \mapsto ($x_1 - 2x_2, 0, -x_1$) $T(x_1, x_2) = (0, 0, 0)$ Therefore, $(x_1 - 2x_2, 0, -x_1) = (0, 0, 0)$ $x_1 - 2x_2 = 0$ $x_2 = \frac{x_1}{2} = 0$ 0 = 0 $-x_1 = 0 \Rightarrow x_1 = 0$ So $(x_1, x_2) = (0, 0)$ So ker $(T) = \{(0, 0)\} = \{0\}$

Example 2: Let $T : \mathbb{R}^5 \to \mathbb{R}^4$

 $x \mapsto Ax$, where $A = \begin{bmatrix} 1 & 2 & 0 & 1 & -1 \\ 2 & 1 & 3 & 1 & 0 \\ -1 & 0 & -2 & 0 & 1 \\ 0 & 0 & 0 & 2 & 8 \end{bmatrix}$ $T(x) = 0 \Rightarrow Ax = 0$ Row echelon form: $x_1 + 2x_3 - x_5 = 0$ $x_2 - x_3 - 2x_5 = 0$ $x_4 + 4x_5 = 0$ $x_5 = t$ $x_3 = s$ $x_1 = -2x_3 + x_5 = -2s + t$ $x_2 = x_3 + 2x_5 = s + 2t$ $x_4 = -4t$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = \begin{bmatrix} -2s+t \\ s+2t \\ s \\ -4t \\ t \end{bmatrix} = s \begin{bmatrix} -2 \\ 1 \\ 1 \\ 0 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ 2 \\ 0 \\ -4 \\ 1 \end{bmatrix}$$

Basis for the kernel: $B = \{(-2, 1, 1, 0, 0), (1, 2, 0, -4, 1)\}$

range(T) = { $T(v : v \in V)$ } Theorem: The range of a linear transformation $T : V \to W$ is a subspace of W.

Corollary: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation given by T(x) = Ax. Then the column space of A is equal to the range of T.

The dimension of the kernel of *T* is called the nullity of *T*. It is denoted by nullity(T). The dimension of the range of *T* is called the rank of *T*. It is denoted by rank(T). rank(T) + nullity(T) = n dim(range) + dim(kernel) = dim(domain)

$$R^{2} \rightarrow R^{2}$$

$$(x_{1}, x_{2}) \mapsto (2x_{1} + x_{2}, x_{1} - x_{2})$$

$$T(x) = Ax$$

$$x = (x_{1}, x_{2})^{T}$$

$$\begin{bmatrix} 2 & 1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} x_{1} \\ x_{2} \end{bmatrix} = \begin{bmatrix} 2x_{1} + x_{2} \\ x_{1} - x_{2} \end{bmatrix}$$

A function $T: V \rightarrow W$ is called one-to-one (or injective) if and only if for every $u, v \in V$ $T(u) = T(v) \Rightarrow u = v$

Theorem: Let $T : V \rightarrow W$ be a linear transformation. Then, *T* is one-to-one if and only if $\ker(T) = \{0\}$. *Proof: Suppose *T* is one-to-one. Then T(v) = 0 $\Rightarrow T(v) = T(0)$ $\Rightarrow v = 0$ $\Rightarrow \ker(T) = \{0\}$ Suppose $\ker(T) = \{0\}$ Let $u, v \in V, T(u) = T(v)$ $\Rightarrow T(u) - T(v) = 0$ $\Rightarrow T(u - v) = 0$ As ker(T) = {0} then $u - v = 0 \Rightarrow u = v$ So T is one-to-one

A function $T : V \to W$ is said to be onto (surjective) if W is equal to the range of T. For every $w \in W$, there exists a $v \in V$ such that T(v) = w.

Theorem: Let $T : V \rightarrow W$ be a linear transformation, where W is finite dimensional. Then T is onto if and only if rank(T) = dim(W)

Theorem: Let $T : V \to W$ be a linear transformation with vector spaces $V, W : \dim(V) = \dim(W) = n$. Then *T* is one-to-one if and only if it is onto. *Proof: If *T* is one-to-one then ker $(T) = \{0\}$, so the dimension of the kernel is 0. Therefore, $\dim(range(T)) = n - \dim(ker(T)) = n - 0 = n$ So $rank(T) = \dim(W)$ Conversely, if *T* is onto, then $\dim(range(T)) = \dim(W) = n$ So $\dim(ker(T)) = 0$ and *T* is one-to-one.

Definition: A linear transformation $T: V \rightarrow W$ that is one-to-one and onto is called an isomorphism. Moreover, if V, W are vector spaces such that there exists an isomorphism from V to W, then we say that they are isomorphic to each other.

**Theorem: Two finite-dimensional vector spaces V and W are isomorphic if and only if they are of the same dimension.

Proof: (\Rightarrow) Suppose that *V* is isomorphic to *W*, and dim(*V*) = *n*. Therefore, there exists an isomorphism $T : V \rightarrow W$ that is one-to-one and onto. So dim(ker(*T*)) = 0 (because T is one-to-one) and dim(*range*(*T*)) = *n* = dim(*W*) (because T is onto). So dim(*W*) = dim(*V*) (\Leftarrow) Suppose that dim(*V*) = dim(*W*) = *n*. Let $B = \{v_1, v_2, ..., v_n\}$ Let $B' = \{w_1, w_2, ..., w_n\}$

Let us define $T : V \to W$ $c_1v_1 + c_2v_2 + ... + c_nv_n \mapsto c_1w_1 + c_2w_2 + ... + c_nw_n$ $T(c_1v_1 + c_2v_2 + ... + c_nv_n) = T(\alpha_1v_1 + \alpha_2v_2 + ... + \alpha_nv_n)$ $c_1T(v_1) + c_2T(v_2) + ... + c_nT(v_n) = \alpha_1T(v_1) + \alpha_2T(v_2) + ... + \alpha_nT(v_n)$ $c_1w_1 + c_2w_2 + ... + c_nw_n = \alpha_1w_1 + \alpha_2w_2 + ... + \alpha_nw_n$ So $c_i = \alpha_i$ for $i \in \{1, ..., n\}$ and T is one-to-one and *T* is onto because $\dim(v) = \dim(W)$

Consequently, *T* is an isomorphism. So $V \approx W$.

6.3 - Matrices for Linear Transformations

Theorem: Let $T : \mathbb{R}^n \to \mathbb{R}^m$ be a linear transformation s.t. $T(\mathbb{R}_1) = \begin{bmatrix} a_{11} \\ a_{21} \\ \cdots \\ a_{m1} \end{bmatrix}, T(\mathbb{R}_2) = \begin{bmatrix} a_{12} \\ a_{22} \\ \cdots \\ a_{m2} \end{bmatrix}, T(\mathbb{R}_3) = \begin{bmatrix} a_{1n} \\ a_{2n} \\ \cdots \\ a_{mn} \end{bmatrix}$ Then the

Then the $m \times n$ matrix whose columns correspond to $T(c_i)$,

 $A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$

is such that T(v) = Av for every $v \in R^n$. A is called the standard matrix for T.

Example: Find the standard matrix for the linear transformation $T : \mathbb{R}^2 \to \mathbb{R}^2$ defined by T(x,y) = (x+y, x-2y) T(1,0) = (1,1) T(0,1) = (1,-2)So $A = [T(e_1)|T(e_2)]$ $A = \begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix}$ To check it: $\begin{bmatrix} 1 & 1 \\ 1 & -2 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} x+y \\ x-2y \end{bmatrix}$

Example: $D: P_2 \rightarrow P_2; p \mapsto p'$ $e_1 = 1; D(e_1) = 0 = 0e_1 + 0e_2 + 0e_3$ $e_2 = x; D(e_2) = 1 = 1e_1 + 0e_2 + 0e_3$ $e_3 = x^2; D(e_3) = 2x = 0e_1 + 2e_2 + 0e_3$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix}$$

Check: $x^2 + 3x + 2$
$$D(p) = 2x + 3$$

$$A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 2 \\ 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 3 \\ 2 \\ 0 \end{bmatrix}$$

Theorem: Let $T_1 : \mathbb{R}^n \to \mathbb{R}^m$ and $T_2 : \mathbb{R}^m \to \mathbb{R}^p$ be linear transformations with standard matrices A_1 and A_2 . The composition $T : \mathbb{R}^n \to \mathbb{R}^p$ is defined by $T(v) = T_2(T_1(v))$ is a linear transformation.

Moreover, the standard matrix A for T is given by the matrix product $A = A_2A_1$

Example: Let T_1, T_2 be linear transformations from $R^3 \to R^3$ such that $T_1(x, y, z) = (2x + y, 0, x + z)$ and $T_2 = (x - y, z, y)$ $A_1 = \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} A_2 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ For $T_2 \circ T_1$: $A = A_2A_1 = \begin{bmatrix} 1 & -1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 2 & 1 & 0 \\ 0 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 & 0 \\ 1 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$ So $T_2 \circ T_1(x, y, z) = (2x + y, x + z, 0)$

Check: $T_2 \circ T_1(x, y, z) = (2x + y - 0, x + z, 0)$

Definition: If $T_1 : \mathbb{R}^n \to \mathbb{R}^n$ and $T_2 : \mathbb{R}^n \to \mathbb{R}^n$ are linear transformations such that for every $v \in \mathbb{R}^n$, $T_2(T_1(v)) = v$ and $T_1(T_2(v)) = v$, then T_2 is called the inverse of T and we say that T_1 is invertible.

Theorem: Let $T : \mathbb{R}^n \to \mathbb{R}^n$ be a linear transformation with standard matrix A. Then the following conditions are equivalent:

- 1. T is invertible
- 2. *T* is an isomorphism
- 3. A is invertible

Moreover, if *T* is invertible with standard matrix *A*, then the standard matrix for T^{-1} is A^{-1} .

Example:
$$T : R^3 \to R^3$$

 $T(x_1, x_2, x_3) = (2x_1 + 3x_2 + x_3, 3x_1 + 3x_2 + x_3, 2x_1 + 4x_2 + x_3)$
 $A = \begin{bmatrix} 2 & 3 & 1 \\ 3 & 3 & 1 \\ 2 & 4 & 1 \end{bmatrix}^{-1} = \begin{bmatrix} -1 & 1 & 0 \\ -1 & 0 & 1 \\ 6 & -2 & -3 \end{bmatrix}$
 $T^{-1}(x_1, x_2, x_3) = (-x_1 + x_2, -x_1 + x_3, 6x_1 - 2x_2 - 3x_3)$