
6.1 - Introduction to Linear Transformations

Definition: Let V and W be vector spaces. The function T : V → W is called a linear
transformation of V into W if the following two properties are true for all u and v in V
for any scalar c:
1. Tu  v  Tu  Tv
2. Tcu  cTu

Example 1: T : 2 → 2

Tv1v2  2v1,v1  v2

Let u  u1,u2, v  v1,v2, c ∈ 
1. Tu  v  Tu1  v1,u2  v2
 2u1  v1, u1  v1  u2  v2
 2u1,u1  u2  2v1,v1  v2
 Tu  Tv
2. Tcu  Tcu1,u2
 Tcu1,cu2
 2cu1,cu1  cu2
 c2u1,u1  u2
 cTu1,u2  cTu

Example 2: If W  V, then T is a linear operator.
T : C0,1 → C0,1
f → f ′

Tf  g  f  g ′  f ′  g′  Tf  Tg
Tcf  cf ′  cf ′  cTf

Examples of non-linear transformations:
T :  → 
x → x2

Tx  y  x  y2 ≠ x2  y2  Tx  Ty
So T is not a linear transformation.

T :  → 
x → x  1
Tx  y  x  y  1
Tx  Ty  x  1  y  1  x  y  2
T is not a linear transformation.
T0 ≠ 0
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Theorem: Let T be a linear transformation from V to W, where u and v are in V, the
following properties must be true:
1. T0  0
2. T−v  −Tv
3. Tu − v  Tu − Tv
4. If v  ∑ i1

n civi then Tv  ∑ i1
n ciTvi

Proof:
1. T0  0  T0  T0
T0  2T0  0  T0
2. T−v  −1Tv  −Tv
3. Tu − v  Tu  −v  Tu  T−v  Tu − Tv

T :  → 
x → x2

T−x  x2  Tx ≠ −Tx
So it is not a linear transformation

Theorem: Let A be an m  n matrix. The function T defined by Tv  Av is a linear
transformation from n into n.

Examples:
2 → 2

x
y

→
1 2
2 3

x
y


x  2y
2x  3y

x,y → x  2y, 2x  3y

Let T : Mm,n → Mn,m

A → AT

is a linear transformation because A  BT  AT  BT

cAT  cAT

6.2 - The Kernel and Range of a Linear Transformation

Definition: Let T : V → W be a linear transformation. Then the set of all vectors v ∈ V
that satisfy Tv  0 is called the kernel of T and is denoted by kerT.

Example 1: T : R2 → R3

x1,x2  x1 − 2x2, 0,−x1
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Tx1,x2  0,0,0
Therefore, x1 − 2x2, 0,−x1  0,0,0
x1 − 2x2  0
x2  x1

2  0
0  0
−x1  0  x1  0
So x1,x2  0,0
So kerT  0,0  0

Example 2: Let T : R5 → R4

x  Ax, where

A 

1 2 0 1 −1
2 1 3 1 0
−1 0 −2 0 1
0 0 0 2 8

Tx  0  Ax  0
1 2 0 1 −1 0
2 1 3 1 0 0
−1 0 −2 0 1 0
0 0 0 2 8 0

Row echelon form:
1 0 2 0 −1 0
0 1 −1 0 −2 0
0 0 0 1 4 0
0 0 0 0 0 0



x1  2x3 − x5  0
x2 − x3 − 2x5  0
x4  4x5  0
x5  t
x3  s
x1  −2x3  x5  −2s  t
x2  x3  2x5  s  2t
x4  −4t
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x 

x1

x2

x3

x4

x5



−2s  t
s  2t

s
−4t
t

 s

−2
1
1
0
0

 t

1
2
0
−4
1

Basis for the kernel: B  −2,1,1,0,0, 1,2,0,−4,1

range(T)  Tv : v ∈ V
Theorem: The range of a linear transformation T : V → W is a subspace of W.

Corollary: Let T : Rn → Rm be a linear transformation given by Tx  Ax. Then the
column space of A is equal to the range of T.

The dimension of the kernel of T is called the nullity of T. It is denoted by nullity(T).
The dimension of the range of T is called the rank of T. It is denoted by rank(T).
rank(T)  nullity(T)  n
dim(range)  dim(kernel)  dim(domain)

R2 → R2

x1,x2  2x1  x2,x1 − x2
Tx  Ax
x  x1,x2T

2 1
1 −1

x1

x2


2x1  x2

x1 − x2

A function T : V → W is called one-to-one (or injective) if and only if for every u,v ∈ V
Tu  Tv  u  v

Theorem: Let T : V → W be a linear transformation. Then, T is one-to-one if and only if
kerT  0.
*Proof: Suppose T is one-to-one. Then
Tv  0
 Tv  T0
 v  0
 kerT  0
Suppose kerT  0
Let u,v ∈ V, Tu  Tv
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 Tu − Tv  0
 Tu − v  0
As kerT  0 then u − v  0  u  v
So T is one-to-one

A function T : V → W is said to be onto (surjective) if W is equal to the range of T.
For every w ∈ W, there exists a v ∈ V such that Tv  w.

Theorem: Let T : V → W be a linear transformation, where W is finite dimensional.
Then T is onto if and only if rank(T)  dim(W)

Theorem: Let T : V → W be a linear transformation with vector spaces
V,W : dimV  dimW  n. Then T is one-to-one if and only if it is onto.
*Proof: If T is one-to-one then kerT  0, so the dimension of the kernel is 0.
Therefore, dimrangeT  n − dimkerT  n − 0  n
So rankT  dimW
Conversely, if T is onto, then dimrangeT  dimW  n
So dimkerT  0 and T is one-to-one.

Definition: A linear transformation T : V → W that is one-to-one and onto is called an
isomorphism. Moreover, if V,W are vector spaces such that there exists an
isomorphism from V to W, then we say that they are isomorphic to each other.

**Theorem: Two finite-dimensional vector spaces V and W are isomorphic if and only if
they are of the same dimension.
Proof:  Suppose that V is isomorphic to W, and dimV  n.
Therefore, there exists an isomorphism T : V → W that is one-to-one and onto.
So dimkerT  0 (because T is one-to-one) and dimrangeT  n  dimW
(because T is onto).
So dimW  dimV
 Suppose that dimV  dimW  n.
Let B  v1,v2, . . . ,vn
Let B ′  w1,w2, . . . ,wn

Let us define T : V → W
c1v1  c2v2 . . .cnvn  c1w1  c2w2 . . .cnwn

Tc1v1  c2v2 . . .cnvn  T1v1  2v2 . . .nvn
c1Tv1  c2Tv2 . . .cnTvn  1Tv1  2Tv2 . . .nTvn
c1w1  c2w2 . . .cnwn  1w1  2w2 . . .nwn

So ci   i for i ∈ 1, . . . ,n
and T is one-to-one
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and T is onto because dimv  dimW

Consequently, T is an isomorphism. So V ≈ W.

6.3 - Matrices for Linear Transformations

Theorem: Let T : Rn → Rm be a linear transformation s.t.

TR1 

a11

a21

. . .
am1

, TR2 

a12

a22

. . .
am2

, TR3 

a1n

a2n

. . .
amn

Then the m  n matrix whose columns correspond to Tci,

A 

a11 a12 . . . a1n

a21 a22 . . . a2n

. . . . . . . . . . . .
am1 am2 . . . amn

is such that Tv  Av for every v ∈ Rn.
A is called the standard matrix for T.

Example: Find the standard matrix for the linear transformation T : R2 → R2 defined by
Tx,y  x  y, x − 2y
T1,0  1,1
T0,1  1,−2
So A  Te1|Te2

A 
1 1
1 −2

To check it:
1 1
1 −2

x
y


x  y
x − 2y

Example: D : P2 → P2; p  p′
e1  1; De1  0  0e1  0e2  0e3

e2  x; De2  1  1e1  0e2  0e3

e3  x2; De3  2x  0e1  2e2  0e3
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A 

0 1 0
0 0 2
0 0 0

Check: x2  3x  2
Dp  2x  3

A 

0 1 0
0 0 2
0 0 0

2
3
1



3
2
0

Theorem: Let T1 : Rn → Rm and T2 : Rm → Rp be linear transformations with standard
matrices A1 and A2. The composition T : Rn → Rp is defined by Tv  T2T1v is a
linear transformation.

Moreover, the standard matrix A for T is given by the matrix product A  A2A1

Example: Let T1,T2 be linear transformations from R3 → R3 such that
T1x,y, z  2x  y, 0,x  z and T2  x − y, z,y

A1 

2 1 0
0 0 0
1 0 1

A2 

1 −1 0
0 0 1
0 1 0

For T2 ∘ T1 : A  A2A1 

1 −1 0
0 0 1
0 1 0

2 1 0
0 0 0
1 0 1



2 1 0
1 0 1
0 0 0

So T2 ∘ T1x,y, z  2x  y,x  z, 0

Check: T2 ∘ T1x,y, z  2x  y − 0, x  z, 0

Definition: If T1 : Rn → Rn and T2 : Rn → Rn are linear transformations such that for
every v ∈ Rn, T2T1v  v and T1T2v  v, then T2 is called the inverse of T and we
say that T1 is invertible.

Theorem: Let T : Rn → Rn be a linear transformation with standard matrix A. Then the
following conditions are equivalent:
1. T is invertible
2. T is an isomorphism
3. A is invertible
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Moreover, if T is invertible with standard matrix A, then the standard matrix for T−1 is
A−1.

Example: T : R3 → R3

Tx1,x2,x3  2x1  3x2  x3, 3x1  3x2  x3, 2x1  4x2  x3

A 

2 3 1
3 3 1
2 4 1

−1



−1 1 0
−1 0 1
6 −2 −3

T−1x1,x2,x3  −x1  x2, − x1  x3, 6x1 − 2x2 − 3x3
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