5.1 - Length and Dot Product in R^n

Def: The length of a vector $\overrightarrow{v} = (v_1, v_2, ..., v_n)$ in \mathbb{R}^n is given by $|\overrightarrow{v}| = \sqrt{(v_1)^2 + (v_2)^2 + ... + (v_n)^2}$

If $||\vec{v}|| = 1$, then the vector \vec{v} is called a unit vector.

Let \overrightarrow{v} be a vector in \mathbb{R}^n and c is a scalar. Then $||c\overrightarrow{v}|| = |c|||\overrightarrow{v}||$

If v is a nonzero vector in \mathbb{R}^n , the vector $\overrightarrow{u} = \frac{\overrightarrow{v}}{||\overrightarrow{v}||}$ is a unit vector.

We call \vec{u} the unit vector in the direction of \vec{v}

*Proof:
$$\left| \left| \overrightarrow{u} \right| \right| = \left| \left| \frac{\overrightarrow{v}}{\left| \left| \overrightarrow{v} \right| \right|} \right| = \frac{1}{\left| \left| \overrightarrow{v} \right| \right|} = 1$$

Example: Find the unit vector in the direction of the vector $\vec{v} = (1, 1, 1)$

$$\vec{u} = \frac{\vec{v}}{||\vec{v}||} = \left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}\right)$$

The dot product of $\overrightarrow{u} = (u_1, u_2, \dots, u_n)$ and $\overrightarrow{v} = (v_1, v_2, \dots, v_n)$ is the quantity $\overrightarrow{u} \cdot \overrightarrow{v} = u_1 v_1 + u_2 v_2 + \dots + u_n v_n = \sum_{i=1}^n u_i v_i$

Theorem: If $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w} \in \mathbb{R}^n$, then

1.
$$\overrightarrow{u} \cdot \overrightarrow{v} = \overrightarrow{v} \cdot \overrightarrow{u}$$

2.
$$\overrightarrow{u}(\overrightarrow{v} \cdot \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

3.
$$c(\overrightarrow{u} \cdot \overrightarrow{v}) = (c\overrightarrow{u}) \cdot \overrightarrow{v} = \overrightarrow{u} \cdot (c\overrightarrow{v})$$

4.
$$\overrightarrow{v} \cdot \overrightarrow{v} = |\overrightarrow{v}|^2$$

5.
$$\vec{v} \cdot \vec{v} \ge 0$$
 and $\vec{v} \cdot \vec{v} = 0 \Leftrightarrow \vec{v} = \vec{0}$

Example: Given that
$$\overrightarrow{u} \cdot \overrightarrow{u} = 4$$
, $\overrightarrow{u} \cdot \overrightarrow{v} = -1$, $\overrightarrow{v} \cdot \overrightarrow{v} = 2$. Find $(\overrightarrow{u} + \overrightarrow{v})(3\overrightarrow{u} - \overrightarrow{v})$ $(\overrightarrow{u} + \overrightarrow{v})(3\overrightarrow{u} - \overrightarrow{v}) = 3\overrightarrow{u} \cdot \overrightarrow{u} - \overrightarrow{u} \cdot \overrightarrow{v} + 3\overrightarrow{v} \cdot \overrightarrow{u} - \overrightarrow{v} \cdot \overrightarrow{v} = 12 + 1 - 3 - 2 = 8$

We define the angle between two vectors \overrightarrow{u} and \overrightarrow{v} in \mathbb{R}^n by $\cos\theta = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{||\overrightarrow{u}||||\overrightarrow{v}||}$ for $0 \le \theta \le \pi$

Example:
$$\overrightarrow{u} = \langle 1, 2 \rangle$$
; $\overrightarrow{v} = \langle 2, 3 \rangle$ arccos $\frac{(1,2) \cdot (2,3)}{\sqrt{5} \sqrt{13}} = \frac{8}{\sqrt{65}}$ $-1 \le \cos \theta \le 1$ $-||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| \le \overrightarrow{u} \cdot \overrightarrow{v} \le ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}||$

Cauchy-Schwarz Inequality: $|\overrightarrow{u} \cdot \overrightarrow{v}| \leq ||\overrightarrow{u}|| \cdot ||\overrightarrow{v}||$ Case 1: Suppose $\overrightarrow{u} = \overrightarrow{0}$. Then $||\overrightarrow{u}|| \cdot ||\overrightarrow{v}|| = 0$ and $|\overrightarrow{u} \cdot \overrightarrow{v}| = 0$. Case 2: If $\overrightarrow{u} \neq 0$, let $t \in \mathbb{R}$: $(t\overrightarrow{u} + \overrightarrow{v}) \cdot (t\overrightarrow{u} + \overrightarrow{v}) \geq 0$ $t^2(\overrightarrow{u} \cdot \overrightarrow{u}) + t\overrightarrow{u} \cdot \overrightarrow{v} + t\overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{v} \geq 0$ $t^2(\overrightarrow{u} \cdot \overrightarrow{u}) + 2t\overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{v} = 0$ However, if we have $at^2 + bt + c \geq 0$ for all $t \in \mathbb{R}$, then $b^2 - 4ac \leq 0$ So $(2\overrightarrow{u} \cdot \overrightarrow{v})^2 = 4(\overrightarrow{u} \cdot \overrightarrow{u})(\overrightarrow{v} \cdot \overrightarrow{v}) \leq 0$.

Therefore, $4(\vec{u} \cdot \vec{v})^2 \le 4(\vec{u} \cdot \vec{u})(\vec{v} \cdot \vec{v})$ and $|\vec{u} \cdot \vec{v}| \le ||\vec{u}|| \cdot ||\vec{v}||$

Two vectors \vec{u} and \vec{v} are orthogonal to each other if their dot product is zero.

Example:
$$\vec{u} = (1, 1, 1, -1); \vec{v} = (-2, 0, 1, -1)$$

 $\vec{u} \cdot \vec{v} = 0$

The triangle inequality: If \vec{u} and \vec{v} are vectors in \mathbb{R}^n , then $||\vec{u} + \vec{v}|| \le ||\vec{u}|| + ||\vec{v}||$

$$\begin{aligned} &\left|\left|\overrightarrow{u}+\overrightarrow{v}\right|\right|^{2} = \left(\overrightarrow{u}+\overrightarrow{v}\right) \cdot \left(\overrightarrow{u}+\overrightarrow{v}\right) \\ &= \overrightarrow{u} \cdot \overrightarrow{u} + \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{v} \cdot \overrightarrow{u} + \overrightarrow{v} \cdot \overrightarrow{v} \\ &= \left|\left|\overrightarrow{u}\right|\right|^{2} + 2\overrightarrow{u} \cdot \overrightarrow{v} + \left|\left|\overrightarrow{v}\right|\right|^{2} \\ &\leq \left|\left|\overrightarrow{u}\right|\right|^{2} + 2\left|\left|\overrightarrow{u}\right|\right|\left|\left|\left|\overrightarrow{v}\right|\right| + \left|\left|\overrightarrow{v}\right|\right|^{2} \\ &= \left(\left|\left|\overrightarrow{u}\right|\right| + \left|\left|\overrightarrow{v}\right|\right|\right)^{2} \\ &\text{So } \left|\left|\overrightarrow{u} + \overrightarrow{v}\right|\right|^{2} \leq \left(\left|\left|\overrightarrow{u}\right|\right| + \left|\left|\overrightarrow{v}\right|\right|\right)^{2} \end{aligned}$$

$$||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + 2\vec{u} \cdot \vec{v} + ||v||^2$$

However, if $\vec{u} \cdot \vec{v} = 0$, then $||\vec{u} + \vec{v}||^2 = ||\vec{u}||^2 + ||\vec{v}||^2$ (Pythagorian theorem)

5.2 - Inner Product Spaces

Definition: Let u, v, w be vectors in a vector space V, and let c be any scalar. An inner product on V is a function that associates a real number $\langle u, v \rangle$ with each pair of vectors u and v, and satisfies the following:

- 1. $\langle u, v \rangle = \langle v, u \rangle$
- 2. $\langle u, v + w \rangle = \langle u, v \rangle + \langle u, w \rangle$
- 3. $c\langle u, v \rangle = \langle cu, v \rangle$
- 4. $\langle v, v \rangle \ge 0$ and $\langle v, v \rangle = 0$ if and only if v = 0

A vector space *V* with an inner product is called an inner product space.

Example: Take $V = \mathbb{R}^2$ and $\langle u, v \rangle = u_1 v_1 + 2u_2 v_2$ where $u = \langle u_1, v_2 \rangle$; $v = \langle v_1, v_2 \rangle$

Take
$$V = M_{2,2}$$
 and $\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$B = \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix}$$

Take V = C[a,b] where $\langle f,g \rangle =$

f(a) * g(a)? No, f(0) * g(0) = 0, but a is not necessarily 0.

$$\langle f, g \rangle = \int_{a}^{b} f(x) * g(x) dx$$

$$\langle f, f \rangle = 0 \Rightarrow \int_{a}^{b} [f(x)]^{2} dx = 0$$

Definition: Let u and v be vectors in an inner product space V.

- 1. The norm (or length) of u is $||u|| = \sqrt{\langle u, u \rangle}$
- 2. The angle between two nonzero vectors u, v is given by $\cos \theta = \frac{\langle u, v \rangle}{\|u\| * \|v\|}$ where $0 \le \theta \le \pi$.
 - 3. u, v are orthogonal if $\langle u, v \rangle = 0$

Examples:

Let
$$V = M_{2,2}$$
; $A = \begin{bmatrix} 1 & 1 \\ 2 & 3 \end{bmatrix}$; $B = \begin{bmatrix} 2 & 1 \\ -1 & 0 \end{bmatrix}$

What is ||A||, ||B||, the angle between A and B?

$$\langle A, B \rangle = a_{11}b_{11} + a_{12}b_{12} + a_{21}b_{21} + a_{22}b_{22}$$

 $\arccos \frac{\langle A, B \rangle}{\|A\| \|B\|} = \frac{(1*2) + (1*1) + (2*(-1)) + (3*0)}{\sqrt{1+1+4+9}\sqrt{4+1+1+0}} = \frac{1}{90}\sqrt{6}\sqrt{15}$
 $\arccos \frac{\sqrt{90}}{90} = \arccos \frac{1}{30}\sqrt{10}$

$$||u|| = \sqrt{\langle u, u \rangle} = \sqrt{\langle 1, 1 \rangle, \langle 1, 1 \rangle} = \sqrt{3}$$

$$\overrightarrow{proj_{\overrightarrow{v}}\overrightarrow{u}} = \frac{\overrightarrow{u} \cdot \overrightarrow{v}}{\overrightarrow{v} \cdot \overrightarrow{v}} \overrightarrow{v}$$

For inner product space V:

$$proj_{v}u = \frac{\langle u,v \rangle}{\langle v,v \rangle}v$$

Example: Let f(x) = x and $g(x) = x^2$ be functions on C[0,1].

$$proj_{g}f = \frac{\langle f,g \rangle}{\langle g,g \rangle}g = \frac{\int_{0}^{1} f(x)g(x)dx}{\int_{0}^{1} g(x)g(x)dx} = \frac{\int_{0}^{1} x^{3}dx}{\int_{0}^{1} x^{4}dx}g = \frac{\frac{1}{4}}{\frac{1}{5}}x^{2} = \frac{5}{4}x^{2}$$

Section 5.3 - Orthogonal Bases: Gram-Schmidt Process

Definition: A set *S* of vectors in an inner product space *V* is called orthogonal if every pair of vectors in *S* is orthogonal.

If, in addition, each vector in the set S is a unit vector, then S is called orthonormal.

Suppose $S = \{v_1, v_2, ..., v_n\}$

- 1. $\langle v_i, v_j \rangle = 0$ if $i \neq j$ (orthogonal)
- 2. $\langle v_i, v_i \rangle = 0$ and $||v_i|| = 1$ for all *i*, then it is orthonormal

If *S* is a basis, then it is called an orthogonal basis or an orthonormal basis, respectively.

In
$$P_2$$
: $\langle p,q \rangle = a_0b_0 + a_1b_1 + a_2b_2$, where $p(x) = a_0 + a_1x + a_2x^2$ and $q(x) = b_0 + b_{1x} + b_2x^2$.
In P_n : $\langle p,q \rangle = \sum_{i=0}^n a_ib_i$

For P_n (polynomials degree $\leq n$), a standard basis is $\{1, x, x^2, \dots, x^{n-1}, x^n\}$. Show that this is an orthonormal basis:

1. Let
$$p_i(x) = x^i$$
 and $p_j(x) = x^j$ $(i \neq j)$
 $P_i(x) = 0 + 0x + 0x^2 + ... + 0x^{i-1} + 1x^i + 0x^{i+1} + ... + 0x^n$
 $P_j(x) = 0 + 0x + 0x^2 + ... + 0x^{j-1} + 1x^j + 0x^{j+1} + ... + 0x^n$
 $\langle p_i, p_j \rangle = 0 * 0 + 0 * 0 + 0 * 0 + ... + 0 * 0 = 0$

2. Let $P_i(x) = x^i$ then $||p_i|| = \sqrt{\langle p_i, p_i \rangle} = \sqrt{1} = 1$ for every $i \in \{0, \dots, n\}$.

So B is an orthonormal basis.

In
$$C[0,2\pi]$$
: $\langle f,g\rangle = \int_0^{2\pi} f(x)g(x)dx$

$$S = \left\{ \frac{1}{\sqrt{2\pi}}, \frac{1}{\sqrt{\pi}} \sin(x), \frac{1}{\sqrt{\pi}} \cos(x), \dots, \frac{1}{\sqrt{\pi}} \sin(nx) \frac{1}{\sqrt{\pi}} \cos(nx) \right\}$$

is an orthogonal set.

Theorem: If $S = \{v_1, v_2, ..., v_n\}$ is an orthogonal set of nonzero vectors in an inner product space V, then S is linearly independent.

*Proof:
$$c_1v_1 + c_2v_2 + ... + c_nv_n = 0$$

 $c_1\langle v_1, v_i \rangle + c_2\langle v_2, v_i \rangle + ... + c_i\langle v_i, v_i \rangle + ... + c_n\langle v_n, v_i \rangle = \langle 0, v_i \rangle$
 $c_i \|v_i\|^2 = 0 \Rightarrow c_i = 0$ for every $i \in \{1, 2, ..., n\}$, so it is linearly independent.

If V is an inner product space of dimension n, then any orthogonal set of n nonzero vectors is a basis of V.

Theorem: If $B = \{v_1, v_2, ..., v_n\}$ is an orthonormal basis for an inner product space V, then the coordinate representation of a vector w with respect to B is $w = \sum_{i=1}^{n} \langle w, v_i \rangle v_i$

Proof: There exist uniquely $c_1, c_2, ..., c_n$ such that $w = \sum_{i=1}^n c_i v_i$.

$$\left\langle w,v_{i}\right\rangle =\left\langle \sum\nolimits_{i=1}^{n}c_{i}v_{i},v_{i}\right\rangle =\sum\nolimits_{j=1}^{n}\left\langle c_{j},v_{j},v_{i}\right\rangle =\sum\nolimits_{j=1}^{n}c_{j}\left\langle v_{j},v_{i}\right\rangle$$

 $\langle w, v_i \rangle = c_i \|v_i\|^2 = c_i \langle -\|v_i\|^2 = 1$ because it is orthonormal.

The c_i coefficients are called the Fourier coefficients.

Theorem: Gram-Schmidt Orthonormalization Process

1. Let $B = \{v_1, v_2, \dots, v_n\}$ be a basis for an inner product space V.

2. Let $B' = \{w_1, w_2, \dots, w_n\}$ where w_i is given by:

$$w_1 = v_1, \ w_2 = v_2 \frac{\langle v_2, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1, \dots, \ w_n = v_n - \frac{\langle v_n, w_1 \rangle}{\langle w_1, w_1 \rangle} w_1 - \frac{\langle v_n, w_2 \rangle}{\langle w_2, w_2 \rangle} w_2 - \dots - \frac{\langle v_n, w_{n-1} \rangle}{\langle w_{n-1}, w_{n-1} \rangle} w_{n-1}$$

3. Let $u_i = \frac{w_i}{\|w_i\|}$, then $B'' = \langle u_1, u_2, \dots, u_n \rangle$ is an orthonormal basis for V.

Example 1: $B = \{(1,1), (0,1)\}$

$$w_1 = (1,1)$$

$$w_2 = v_2 - \frac{\langle w_1, v_2 \rangle}{\langle w_1, w_1 \rangle} w_1 = (0, 1) - \frac{\langle (1, 1), (0, 1) \rangle}{\langle (1, 1), (1, 1) \rangle} (1, 1) = (0, 1) - \frac{1}{2} (1, 1) = (-\frac{1}{2}, \frac{1}{2})$$

$$u_1 = \frac{w_1}{\|w_1\|} = \frac{(1,1)}{\sqrt{2}} = \left(\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2}\right)$$

$$u_2 = \frac{w_2}{\|w_2\|} = \frac{\left(-\frac{1}{2}, \frac{1}{2}\right)}{\sqrt{\frac{1}{2}}} = \left(-\frac{1}{2}\sqrt{2}, \frac{1}{2}\sqrt{2}\right)$$

 $\{u_1, u_2\}$ is an orthonormal basis.

Example 2: $B = \{1, x, x^2\}$ where $V = P_2$

$$\langle p,q\rangle = \int_{-1}^{1} p(x)q(x)dx = \frac{2}{3}pq$$