
Section 4.1 - Vectors in R^n

A vector in the plane is represented geometrically by a directed line segiment
whose initial point is the origin, and whose terminal point is the point x,y.

Properties of Vectors: Let u 1 v 1 and w be vectors in the plane, and let c and d be
scalars.

1. u  v is a vector in the plane.
2. u  v  v  u
3. u  v  w  u  v  w

4. u  0  u
5. u  −u  0
6. cu is a vector in the plane
7. c u  v  cu  cv
8. c  du  cu  du
9. c du  cdu
10. 1u  u

Let u  u1,u2, . . . ,un and v  v1,v2. . . ,vn be vectors in n and let c be a real
number.

Then u  v  u1  v1,u2  v2, . . . ,un  vn
and cu  cu1,cu2, . . . ,cun

The same 10 properties apply to n.

Example:
u  0,5,−2,1 and v  3,4,1,−1 and c  −2
cu  v  3,−6,5,−3

To write a vector x as a linear combination of the vectors v1, v2, and vn, we need to
find scalars c1, c2, and cn such that

x  c1v1  c2v2 . . .cnvn  ∑ i1
n civi

Example: Let x  −1,−2,−2 and u  0,1,4 and v  −1,1,2 and w  3,1,2.
Find scalars a, b, and c such that x  au  bv  cw

−1,−2,−2  0,a, 4a  −b,b, 2b  3c,c, 2c
So −1,−2,−2  −b  3c,a  b  c, 4a  2b  2c



0 −1 3 −1
1 1 1 −2
4 2 2 −2

, row echelon form:
1 0 0 1
0 1 0 −2
0 0 1 −1

Section 4.2 - Vector Spaces

Definition of a vector space: Let V be a set on which two operations (vector
addition and scalar multiplication) are defined. If the following axioms are satisfied for
every element u, v and w and every scalar (real number) c and d, then V is called a
vector space and the elements are called vectors.

Addition:
1. u  v is in V
2. u  v  v  u
3. u  v  w  u  v  w
4. V has a zero vector 0 such that for every u in V, u  0  u
5. For every u in V, there is a vector in V denoted by −u such that u  −u  0

Scalar Multiplication
6. cu is in V.
7. c u  v  cu  cv
8. c  du  cu  du
9. c du  cdu
10. 1 u  u

Some important vector spaces:
  the set of all real numbers
2  the set of all ordered pairs
3  the set of all ordered triples
n  the set or all ordered n-tuples
C−,  the set of all continous functions defined on the real line.
Ca,b  the set of all continous functions defined on the closed interval a,b
P  the set of all polynomials
Pn  the set of all polynomials of degree ≤ n
Mm,n  the set of all m  n matrices
Mn,n  the set of all n  n square matrices

Sets that are not vector spaces
The set of integers



The set of nth degree polynomials

Example 1:
px  x3  x2

qx  −x3  x
px  qx  x2  x – Failure of property 1

Example 2:
Let V  2, the set of all ordered pairs of real numbers, with the standard operation

of addition and the following nonstandard definition of scalar multiplication:
cx1,x2  cx1, 0

10. 1u  u
1x1,y1  1x1, 0

Example 3:
The set of all n  n singular matrices with the standard operations is not a vector

space.
1 0
0 0


0 0
0 1


1 0
0 1

There are cases where two singular matrices, s and t, when added will produce a
nonsingular matrix n.

Section 4.3 - Subspaces of Vector Spaces

Definition: A nonempty subset W of a vector space V is called a subspace of V if W
is itself a vector space under the operations of addition and scalar multiplication
defined in V. W ∈ V

Test for a subspace: If W is a nonempty subset of a vector space V, then W is a
subspace of V if and only if the following closure conditions hold:

1. If u and v are in W, then u  v ∈ W
2. If u ∈ W and c is a scalar, then cu ∈ W

Example: Let W be the set of all 2  2 symmetric matrices.
W ⊂ M2,2, which is a vector space
1. Let A,B ∈ W. A  BT  AT  BT  A  B. Therefore, A  B is symmetric, and

A  B ∈ W.
2. Let A ∈ W and c ∈ . cAT  cAT  cA. Therefore, cA ∈ W

Theorem: If V and W are both subspaces of a vector space U, then the intersection



of V and W, denoted by V ∩ W, is also a subspace of U.

V ∩ W ⊂ U
1. Let u , v ∈ V ∩ W. Then u , v ∈ V and u , v ∈ W  u  v  V and u  v  W.

Therefore, u  v ∈ V ∩ W.
2. Let u ∈ V ∩ W and c ∈ . Then u ∈ V and u ∈ W. cu ∈ V and

cu ∈ W  cu ∈ V ∩ W.

What about the union of two subspaces?
V  x, 0 where x ∈ 
W  0,y where y ∈ 
1,0 ∈ V  W
0,1 ∈ V  W
But 1,0  0,1  1,1 and V  W. So it is not a subspace of 2.

Section 4.4 - Spanning Sets and Linear Independence

A vector v in a vector space V is called a linear combination of the vectors
u1,u2, . . . ,uk if v can be written in the form v  c1u1  c2 u 2 . . .ckul where c1,c2, . . . ,ck

are scalars.

Example: V  M2,2

v 
0 8
2 1

,u1 
0 2
1 0

,u2 
−1 3
1 2

,u3 
−2 0
1 3

v  c1u1  c2u2  c3u3

0 8
2 1


−c2 − 2c3 2c1  3c2

c1  c2  c3 2c2  3c3

0 −1 −2 0
2 3 0 8
1 1 1 2
0 2 3 1

, row echelon form:

1 0 0 1
0 1 0 2
0 0 1 −1
0 0 0 0

So
0 8
2 1

 1
0 2
1 0

 2
−1 3
1 2

−
−2 0
1 3

Spanning sets:
Let S  v1,v2, . . . ,vr be a subspace of a vector space V. The set S is called a



spanning set of V if every vector in the vector space V can be written as a linear
combination of vectors in S. In such cases, we say that S spans V.

Example: The set S  1,0,0, 0,1,0, 0,0,1 spans 3 since every vector
u  u1,u2,u3  u11,0,0  u20,1,0  u30,0,1.

S  1,2,3, 0,1,2, −1,0,1
u1 − u3, 2u1  u2, 3u1  u2  u3

det
1 0 −1
2 1 0
3 2 1

 0

Therefore, S is not a spanning set.

A set of vectors S  v1,v2, . . . ,vR in a vector space V is called linearly
independant if the vector equation c1v1  c2v2 . . .ckvk  0 has only the trivial solution
c1  0,c2  0, . . . ,ck  0. If not, then S is linearly dependant.

Example: Determine whether the set S  1,2,3, 0,1,2, −2,0,1 is dependant
or not.

1v1  c2v2 . . .ckvk  0
1 0 −2 0
2 1 0 0
3 2 1 0

, row echelon form:
1 0 0 0
0 1 0 0
0 0 1 0

Theorem: A set S  v 1, v 2, . . . , v k ,k ≥ 2 is linearly dependant if and only if at
least one of the vectors vj can be written as a linear combination of the other vectors.

c1v1  c2v2 . . .ckvk  0
Without loss of generality (WLG), suppose c1 ≠ 0.
c1v1  −c2v2 −. . .−ckvk, so v1  − c2

c1 v2 −. . .− ck
vk vk.

Conversely, if v1  c2v2 . . .ckvk → v1 − c2v2 −. . .−ckvk  0
Therefore, if a cn ≠ 0, then the equation is dependant.

Two vectors are linearly dependant if one is a scalar multiple of the other.
S  1,1,1, 2,2,2 is a linearly dependant set.

Section 4.5 - Basis and Dimensions



A set of vectors S  v1,v2, . . . ,vn in a vector space V is called a b asis for V if the
following conditions are true:

1. S spans V
2. S is linearly independent

- A standard basis for 2 is e11,e21, . . . ,en where ei  0,0, . . . , 1, . . . , 0
- A monstandard basis for 2 is S  1,2, 2,1

The standard basis is i , j , k

For Pn (polynomials degree ≤ n), a standard basis is 1,x,x2, . . . ,xn−1,xn

For M2,2,
1 0
0 0

,
0 1
0 0

,
0 0
1 0

,
0 0
0 1

*Theorem: If S  v1,v2, . . . ,vn is a basis for a space V. Then every vector in V can
be written in one and only one way as linear combinations of vectors in S.

Proof: Let u ∈ V. Then, there exist c1,c2, . . . ,cn : u  c1v1  c2v2 . . .cnvn.
(Spanning set)

Suppose u  b1v1  b2v2 . . .bnvn. Then
c1 − b1v1  c2 − b2v2 . . .cn − bnvn  0.

But S is a basis, therefore it is linearly independent. So
c1 − b1  c2 − b2  cn − bn  0. Therefore, ci  bi for every i ∈ 1, . . . ,n.

Consequently, the representation is unique.

*Theorem: If S  v1,v2, . . . ,vn is a basis for vector space V, then every set
containing more than n vectors in V is linearly dependent.

Corollary: If a vector space V has one basis with n vectors, then every basis for the
vector space has the same number of elements.

If a vector space V has a basis consisting of n vectors, then the number n is called
the dimension of V, denoted by dimV  n.

Examples: dimn  n; dimMn,m  m  n

V  subspace of symmetric matrices in M2,2

dimV  3

basis:
1 0
0 0

,
0 1
1 0

,
0 0
0 1



Theorem: Let V be a vector space of dimension n.
1. If S  v1, . . . ,vn is a linearly independent set of vectors in V, then S is a basis

for V.
2. If S  v1,v2, . . . ,vn spans V, then S is a basis for V.

Section 4.6 - Rank of a Matrix and Systems of Linear Equations

Let A be a m  n matrix.
1. The row space of A is the subspace of n spanned by the row vectors of A.
2. The column space of A is the subspace of m spanned by the column vectors of

A.

If A is an m  n matrix, then the row space and column space of A have the same
dimensions.

The dimension of the row space or the column space is called the rank of matrix A.
Rank is denoted by rankA.

Example: Find the rank of the matrix A given by

A 

1 −2 0 1
2 1 5 −3
0 1 3 5

, row echelon form:
1 0 0 −7
0 1 0 −4
0 0 1 3

The dimension is 3, so the rank is 3.
1 −2 0 1
2 1 5 −3
0 1 3 5

, rank: 3

If A is am m  n matrix, then the set of all solutions of the homogenous system of
linear equations Ax  0 is a subspace of n, called the null space of A, denoted by
NA. NA  x ∈ n : Ax  0. The dimension of the null space of A is called the
nullity of A.

Example 1:
2 1
1 1

x
y


0
0

is a null space.

NA  0,0
nullity(A)  0



Example 2:
1 2
2 4

x
y


0
0

NA  −2t, t, t ∈ 
nullity(A)  1

If A is a m  n matrix of rank r, then n  rankA  nullityA.

For square matrices:
If A is an n  n matrix, then the following conditions are equivalent:
1. A is invertable
2. detA ≠ 0
3. Ax  b has a unique solution for any n  1 matrix b which is x  A−1b
4. Rank(A)  n
5. nullity(A)  0
6. The n row vectors of A are linearly independent.
7. The n column vectors of A are linearly independent.


