Section 4.1 - Vectors in R^n

A vector in the plane is represented geometrically by a directed line segiment whose initial point is the origin, and whose terminal point is the point (x, y).

Properties of Vectors: Let $\vec{u}_1 \vec{v}_1$ and \vec{w} be vectors in the plane, and let *c* and *d* be scalars.

1. $\vec{u} + \vec{v}$ is a vector in the plane. 2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ 3. $(\vec{u} + \vec{v}) + \vec{w} = \vec{u} + (\vec{v} + \vec{w})$ 4. $\vec{u} + \vec{0} = \vec{u}$ 5. $\vec{u} + (-\vec{u}) = \vec{0}$ 6. $c\vec{u}$ is a vector in the plane 7. $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$ 8. $(c + d)\vec{u} = c\vec{u} + d\vec{u}$ 9. $c(d\vec{u}) = (cd)\vec{u}$ 10. $1\vec{u} = \vec{u}$

Let $\vec{u} = (u_1, u_2, ..., u_n)$ and $\vec{v} = (v_1, v_2, ..., v_n)$ be vectors in \mathbb{R}^n and let *c* be a real number.

Then $\vec{u} + \vec{v} = (u_1 + v_1, u_2 + v_2, ..., u_n + v_n)$ and $c\vec{u} = (cu_1, cu_2, ..., cu_n)$

The same 10 properties apply to \mathbb{R}^n .

Example: $\vec{u} = (0, 5, -2, 1)$ and $\vec{v} = (3, 4, 1, -1)$ and c = -2 $c\vec{u} + v = (3, -6, 5, -3)$

To write a vector \vec{x} as a linear combination of the vectors $\vec{v_1}$, $\vec{v_2}$, and $\vec{v_n}$, we need to find scalars c_1 , c_2 , and c_n such that

 $\vec{x} = c_1 \vec{v_1} + c_2 \vec{v_2} + \ldots + c_n \vec{v_n} = \sum_{i=1}^n c_i v_i$

Example: Let $\vec{x} = (-1, -2, -2)$ and $\vec{u} = (0, 1, 4)$ and $\vec{v} = (-1, 1, 2)$ and $\vec{w} = (3, 1, 2)$. Find scalars *a*, *b*, and *c* such that $\vec{x} = a\vec{u} + b\vec{v} + c\vec{w}$

(-1, -2, -2) = (0, a, 4a) + (-b, b, 2b) + (3c, c, 2c)So (-1, -2, -2) = (-b + 3c, a + b + c, 4a + 2b + 2c)

 0
 -1
 3
 -1
 1
 0
 0
 1

 1
 1
 1
 -2
 , row echelon form:
 0
 1
 0
 -2

 4
 2
 2
 -2
 0
 0
 1
 -1

Section 4.2 - Vector Spaces

Definition of a vector space: Let V be a set on which two operations (vector addition and scalar multiplication) are defined. If the following axioms are satisfied for every element u, v and w and every scalar (real number) c and d, then V is called a vector space and the elements are called vectors.

Addition:

1. $\vec{u} + \vec{v}$ is in *V* 2. $\vec{u} + \vec{v} = \vec{v} + \vec{u}$ 3. $\vec{u} + (\vec{v} + \vec{w}) = (\vec{u} + \vec{v}) + \vec{w}$ 4. *V* has a zero vector 0 such that for every \vec{u} in *V*, $\vec{u} + 0 = \vec{u}$ 5. For every \vec{u} in *V*, there is a vector in *V* denoted by $-\vec{u}$ such that $\vec{u} + (-\vec{u}) = 0$

Scalar Multiplication 6. $c\vec{u}$ is in V. 7. $c(\vec{u} + \vec{v}) = c\vec{u} + c\vec{v}$ 8. $(c+d)\vec{u} = c\vec{u} + d\vec{u}$ 9. $c(d\vec{u}) = (cd)\vec{u}$ 10. $1(\vec{u}) = \vec{u}$

Some important vector spaces:

 \mathbb{R} = the set of all real numbers

 \mathbb{R}^2 = the set of all ordered pairs

 \mathbb{R}^3 = the set of all ordered triples

 \mathbb{R}^n = the set or all ordered n-tuples

 $C(-\infty,\infty)$ = the set of all continous functions defined on the real line.

C[a,b] = the set of all continous functions defined on the closed interval [a,b]

P = the set of all polynomials

 P_n = the set of all polynomials of degree $\leq n$

 $M_{m,n}$ = the set of all $m \times n$ matrices

 $M_{n,n}$ = the set of all $n \times n$ square matrices

Sets that are not vector spaces The set of integers The set of *n*th degree polynomials

Example 1: $p(x) = x^3 + x^2$ $q(x) = -x^3 + x$ $p(x) + q(x) = x^2 + x < -$ Failure of property 1

Example 2:

Let $V = \mathbb{R}^2$, the set of all ordered pairs of real numbers, with the standard operation of addition and the following nonstandard definition of scalar multiplication:

 $c(x_1, x_2) = (cx_1, 0)$ 10. $1\vec{u} = \vec{u}$ $1(x_1, y_1) = (1x_1, 0)$

Example 3:

The set of all $n \times n$ singular matrices with the standard operations is not a vector space.

There are cases where two singular matrices, s and t, when added will produce a nonsingular matrix n.

Section 4.3 - Subspaces of Vector Spaces

Definition: A nonempty subset *W* of a vector space *V* is called a subspace of *V* if *W* is itself a vector space under the operations of addition and scalar multiplication defined in *V*. ($W \in V$)

Test for a subspace: If *W* is a nonempty subset of a vector space *V*, then *W* is a subspace of *V* if and only if the following closure conditions hold:

1. If \vec{u} and \vec{v} are in *W*, then $\vec{u} + \vec{v} \in W$

2. If $\vec{u} \in W$ and c is a scalar, then $c\vec{u} \in W$

Example: Let *W* be the set of all 2×2 symmetric matrices.

 $W \subset M_{2,2}$, which is a vector space

1. Let $A, B \in W$. $(A + B)^T = A^T + B^T = A + B$. Therefore, A + B is symmetric, and $A + B \in W$.

2. Let $A \in W$ and $c \in \mathbb{R}$. $(cA)^T = cA^T = cA$. Therefore, $cA \in W$

Theorem: If V and W are both subspaces of a vector space U, then the intersection

of *V* and *W*, denoted by $V \cap W$, is also a subspace of *U*.

 $V \cap W \subset U$

1. Let $\vec{u}, \vec{v} \in V \cap W$. Then $\vec{u}, \vec{v} \in V$ and $\vec{u}, \vec{v} \in W \Rightarrow \vec{u} + \vec{v} = V$ and $\vec{u} + \vec{v} = W$. Therefore, $\vec{u} + \vec{v} \in V \cap W$.

2. Let $\vec{u} \in V \cap W$ and $c \in \mathbb{R}$. Then $\vec{u} \in V$ and $\vec{u} \in W$. $c\vec{u} \in V$ and $\vec{u} \in W$. $c\vec{u} \in V$ and $c\vec{u} \in V \cap W$.

What about the union of two subspaces? $V = \{(x,0) \text{ where } x \in \mathbb{R} \}$ $W = \{(0,y) \text{ where } y \in \mathbb{R} \}$ $(1,0) \in V \cup W$ $(0,1) \in V \cup W$ But (1,0) + (0,1) = (1,1) and $V \cup W$. So it is not a subspace of \mathbb{R}^2 .

Section 4.4 - Spanning Sets and Linear Independence

A vector \vec{v} in a vector space *V* is called a linear combination of the vectors $\vec{u_1}, \vec{u_2}, \dots, \vec{u_k}$ if \vec{v} can be written in the form $\vec{v} = c_1\vec{u_1} + c_2\vec{u_2} + \dots + c_k\vec{u_l}$ where c_1, c_2, \dots, c_k are scalars.

Example: $V = M_{2,2}$ $\overrightarrow{v} = \begin{pmatrix} 0 & 8 \\ 2 & 1 \end{pmatrix}, \overrightarrow{u_1} = \begin{pmatrix} 0 & 2 \\ 1 & 0 \end{pmatrix}, \overrightarrow{u_2} = \begin{pmatrix} -1 & 3 \\ 1 & 2 \end{pmatrix}, \overrightarrow{u_3} = \begin{pmatrix} -2 & 0 \\ 1 & 3 \end{pmatrix}$ $\overrightarrow{v} = c_1 \overrightarrow{u_1} + c_2 \overrightarrow{u_2} + c_3 \overrightarrow{u_3}$ $\begin{pmatrix} 0 & 8 \\ 2 & 1 \end{pmatrix} = \begin{pmatrix} -c_2 - 2c_3 & 2c_1 + 3c_2 \\ c_1 + c_2 + c_3 & 2c_2 + 3c_3 \end{pmatrix}$ $\begin{pmatrix} 0 & -1 & -2 & 0 \\ 2 & 3 & 0 & 8 \\ 1 & 1 & 1 & 2 \end{pmatrix}, \text{ row echelon form:} \begin{pmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 1 & -1 \\ 0 & 2 & 3 & 1 \end{pmatrix}$

So
$$\begin{array}{cccc} 0 & 8 \\ 2 & 1 \end{array} = 1 \begin{array}{cccc} 0 & 2 \\ 1 & 0 \end{array} + 2 \begin{array}{cccc} -1 & 3 \\ 1 & 2 \end{array} - \begin{array}{cccc} -2 & 0 \\ 1 & 3 \end{array}$$

Spanning sets: Let $S = \{\vec{v_1}, \vec{v_2}, ..., \vec{v_r}\}$ be a subspace of a vector space *V*. The set *S* is called a spanning set of V if every vector in the vector space V can be written as a linear combination of vectors in S. In such cases, we say that S spans V.

Example: The set $S = \{(1,0,0), (0,1,0), (0,0,1)\}$ spans \mathbb{R}^3 since every vector $\vec{u} = (u_1, u_2, u_3) = u_1(1,0,0) + u_2(0,1,0) + u_3(0,0,1).$

 $S = \{(1,2,3), (0,1,2), (-1,0,1)\} \\ (u_1 - u_3, 2u_1 + u_2, 3u_1 + u_2 + u_3) \\ det \begin{bmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 3 & 2 & 1 \end{bmatrix} = 0$

Therefore, *S* is not a spanning set.

A set of vectors $S = \{v_1, v_2, ..., v_R\}$ in a vector space *V* is called linearly independent if the vector equation $c_1 \overrightarrow{v_1} + c_2 \overrightarrow{v_2} + ... + c_k \overrightarrow{v_k} = \overrightarrow{0}$ has only the trivial solution $c_1 = 0, c_2 = 0, ..., c_k = 0$. If not, then *S* is linearly dependent.

Example: Determine whether the set $S = \{(1,2,3), (0,1,2), (-2,0,1)\}$ is dependent or not.

 $\vec{v_1} + c_2 \vec{v_2} + \dots + c_k \vec{v_k} = \vec{0}$ $1 \quad 0 \quad -2 \quad 0 \qquad 1 \quad 0 \quad 0 \quad 0$ $2 \quad 1 \quad 0 \quad 0 \text{ , row echelon form: } 0 \quad 1 \quad 0 \quad 0$ $3 \quad 2 \quad 1 \quad 0 \qquad 0 \quad 0 \quad 1 \quad 0$

Theorem: A set $S = {\vec{v}_1, \vec{v}_2, ..., \vec{v}_k}, k \ge 2$ is linearly dependent if and only if at least one of the vectors v_i can be written as a linear combination of the other vectors.

 $c_1\overrightarrow{v_1} + c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k} = \overrightarrow{0}$ Without loss of generality (WLG), suppose $c_1 \neq 0$. $c_1\overrightarrow{v_1} = -c_2\overrightarrow{v_2} - \ldots - c_k\overrightarrow{v_k}$, so $\overrightarrow{v_1} = -\frac{c_2}{c_1}\overrightarrow{v_2} - \ldots - \frac{c_k}{v_k}\overrightarrow{v_k}$. Conversely, if $\overrightarrow{v_1} = c_2\overrightarrow{v_2} + \ldots + c_k\overrightarrow{v_k} \rightarrow \overrightarrow{v_1} - c_2\overrightarrow{v_2} - \ldots - c_k\overrightarrow{v_k} = 0$ Therefore, if a $c_n \neq 0$, then the equation is dependent.

Two vectors are linearly dependant if one is a scalar multiple of the other. $S = \{(1,1,1), (2,2,2)\}$ is a linearly dependant set.

Section 4.5 - Basis and Dimensions

A set of vectors $S = \{v_1, v_2, ..., v_n\}$ in a vector space V is called a b asis for V if the following conditions are true:

1. S spans V

2. *S* is linearly independent

- A standard basis for \mathbb{R}^2 is $\{e_{11}, e_{21}, ..., e_n\}$ where $e_i = (0, 0, ..., 1, ..., 0)$

- A monstandard basis for \mathbb{R}^2 is $S = \{(1,2), (2,1)\}$

The standard basis is $\vec{i}, \vec{j}, \vec{k}$

For P_n (polynomials degree $\leq n$), a standard basis is $\{1, x, x^2, \dots, x^{n-1}, x^n\}$

For $M_{2,2}$, $\left\{ \begin{array}{cccccc} 1 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 1 \\ \end{array} \right\}$

*Theorem: If $S = \{v_1, v_2, ..., v_n\}$ is a basis for a space *V*. Then every vector in *V* can be written in one and only one way as linear combinations of vectors in *S*.

Proof: Let $\vec{u} \in V$. Then, there exist $c_1, c_2, \ldots, c_n : u = c_1v_1 + c_2v_2 + \ldots + c_nv_n$. (Spanning set)

Suppose $u = b_1v_1 + b_2v_2 + ... + b_nv_n$. Then

 $(c_1 - b_1)v_1 + (c_2 - b_2)v_2 + \ldots + (c_n - b_n)v_n = 0.$

But *S* is a basis, therefore it is linearly independent. So

 $c_1 - b_1 = c_2 - b_2 = c_n - b_n = 0$. Therefore, $c_i = b_i$ for every $i \in \{1, ..., n\}$. Consequently, the representation is unique.

*Theorem: If $S = \{v_1, v_2, ..., v_n\}$ is a basis for vector space *V*, then every set containing more than *n* vectors in *V* is linearly dependent.

Corollary: If a vector space V has one basis with n vectors, then every basis for the vector space has the same number of elements.

If a vector space *V* has a basis consisting of *n* vectors, then the number *n* is called the dimension of *V*, denoted by dim(V) = n.

Examples: dim $(\mathbb{R}^n) = n$; dim $(M_{n,m}) = m \times n$

 $V = \text{subspace of symmetric matrices in } M_{2,2}$ dim(V) = 3 basis: $\begin{cases} 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 1 \end{cases}$ Theorem: Let V be a vector space of dimension n.

1. If $S = \{v_1, ..., v_n\}$ is a linearly independent set of vectors in *V*, then *S* is a basis for *V*.

2. If $S = \{v_1, v_2, \dots, v_n\}$ spans *V*, then *S* is a basis for *V*.

Section 4.6 - Rank of a Matrix and Systems of Linear Equations

Let *A* be a $m \times n$ matrix.

1. The row space of A is the subspace of \mathbb{R}^n spanned by the row vectors of A.

2. The column space of A is the subspace of \mathbb{R}^m spanned by the column vectors of A.

If *A* is an $m \times n$ matrix, then the row space and column space of *A* have the same dimensions.

The dimension of the row space or the column space is called the rank of matrix A. Rank is denoted by rank(A).

Example: Find the rank of the matrix A given by

 $A = \begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ 0 & 1 & 3 & 5 \end{bmatrix}, \text{ row echelon form:} \begin{bmatrix} 1 & 0 & 0 & -7 \\ 0 & 1 & 0 & -4 \\ 0 & 0 & 1 & 3 \end{bmatrix}$ The dimension is 3, so the rank is 3. $\begin{bmatrix} 1 & -2 & 0 & 1 \\ 2 & 1 & 5 & -3 \\ 0 & 1 & 3 & 5 \end{bmatrix}, \text{ rank: } 3$

If *A* is am $m \times n$ matrix, then the set of all solutions of the homogenous system of linear equations Ax = 0 is a subspace of \mathbb{R}^n , called the null space of *A*, denoted by N(A). $N(A) = \{x \in \mathbb{R}^n : Ax = 0\}$. The dimension of the null space of *A* is called the nullity of *A*.

Example 1: $\begin{bmatrix} 2 & 1 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ is a null space. $N(A) = \{(0,0)\}$ nullity(A) = 0 Example 2: $\begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ $N(A) = \{(-2t, t), t \in \mathbb{R}\}$ nullity(A) = 1

If A is a $m \times n$ matrix of rank r, then n = rank(A) + nullity(A).

For square matrices:

If *A* is an $n \times n$ matrix, then the following conditions are equivalent:

- 1. A is invertable
- **2.** det(A) \neq 0
- 3. Ax = b has a unique solution for any $n \times 1$ matrix b which is $x = A^{-1}b$
- 4. Rank(A) = n
- 5. nullity(A) = 0
- 6. The n row vectors of A are linearly independent.
- 7. The n column vectors of A are linearly independent.