Section 4.1 - Vectors in R™n

A vector in the plane is represented geometrically by a directed line segiment
whose initial point is the origin, and whose terminal point is the point (x,y).

Properties of Vectors: Let U;V; and W be vectors in the plane, and let ¢ and d be
scalars.

1. U + V is a vector in the plane.

2.U+V=V+U

3.(T+V)+W=T+(V+W)

4.T+0=T1

5.0+ (-0)=0

6. CU is a vector in the plane

7.¢(U+V) =ctl+cV

8. (c+d)U =cU +dU

9.¢(dU) = (cd)U

10.10 =1

Let W = (ug,Uz,...,uy) and V = (Vi,Va...,Vn) be vectors in R" and let ¢ be a real
number.

Then U +V = (U1 +V1,Uz + V2, ..., Uy + V)

and cU = (cuy,Cuy,...,CuUp)

The same 10 properties apply to R".

Example:
U =(05-21)and V = (3,4,1,-1) and ¢ = -2
cU+Vv = (3,-6,5,-3)

To write a vector X as a linear combination of the vectors V1, V2, and V,, we need to
find scalars c1, c2, and ¢, such that

X = CaVi +CaV3 +...4CaVn = D1 CiVi

Example: Let X = (-1,-2,-2) and T = (0,1,4) and V = (-1,1,2) and W = (3,1,2).
Find scalars a, b, and ¢ such that X = at + bV + cw

(-1,-2,-2) = (0,a,4a) + (-b,b,2b) + (3¢, ¢, 2¢c)

So (-1,-2,-2) = (-b+3c,a+b+c,4a+2b+ 2c)



0 -1 3 -1 100 1
1 1 1 -2 ,rowechelonform: 0 1 0 -2
4 2 2 2 001 -1

Section 4.2 - Vector Spaces

Definition of a vector space: Let V be a set on which two operations (vector
addition and scalar multiplication) are defined. If the following axioms are satisfied for
every element u, v and w and every scalar (real number) ¢ and d, then V is called a
vector space and the elements are called vectors.

Addition:
1. U+VisinV
2.U+V=V+TU

3.U+(V+W) = (U+V) +W
4.V has a zero vector 0 such that forevery TinV, U+0 =T
5. For every T in V, there is a vector in V denoted by —U such that 7 + (-T') = 0

Scalar Multiplication
6.cUisin V.
7.¢(T+V) =ctl+cV
8.(c+d)U =cU+dU
9.¢(dT) = (cd)U
10.1(0) =W

Some important vector spaces:

R = the set of all real numbers

R? = the set of all ordered pairs

R3 = the set of all ordered triples

R" = the set or all ordered n-tuples

C(—x,) =the set of all continous functions defined on the real line.
C[a,b] = the set of all continous functions defined on the closed interval [a, b]
P = the set of all polynomials

P, = the set of all polynomials of degree < n

Mmn = the set of all m x n matrices

Mnn = the set of all n x n square matrices

Sets that are not vector spaces
The set of integers



The set of nth degree polynomials

Example 1:

p(x) = x3 + x?

q(x) = —x3 +x

p(x) + q(x) = x? + x <— Failure of property 1

Example 2:

Let V = R?, the set of all ordered pairs of real numbers, with the standard operation
of addition and the following nonstandard definition of scalar multiplication:
C(X1,X2) = (CX1,0)

10.1U =1

1(X1,y1) = (1X1,0)

Example 3:
The set of all n x n singular matrices with the standard operations is not a vector
space.

10 00 10
+

00 01 01

There are cases where two singular matrices, s and t, when added will produce a
nonsingular matrix n.

Section 4.3 - Subspaces of Vector Spaces

Definition: A nonempty subset W of a vector space V is called a subspace of V if W
is itself a vector space under the operations of addition and scalar multiplication
defined in V. (W € V)

Test for a subspace: If W is a nonempty subset of a vector space V, then W is a
subspace of V if and only if the following closure conditions hold:

1.1fdvand Varein W, thenTU+V e W

2.1f 0 € Wand cis a scalar, then ctl € W

Example: Let W be the set of all 2 x 2 symmetric matrices.

W < M3, which is a vector space

1.LetAB e W. (A+B)" = AT+BT = A+B. Therefore, A + B is symmetric, and
A+B e W.

2.LetAeWandc e R. (cA)" = cAT = cA. Therefore, cA e W

Theorem: If V. and W are both subspaces of a vector space U, then the intersection



of V and W, denoted by VNW, is also a subspace of U.

VNnWcUu

1.LetU,VeVNW. ThenU,VeVandU,VeW=T+V=VandTU+V =W.
Therefore, U+V € VOW.

2.LletTeVNWandceR. ThenTeVandU € W. cUl € V and
cUeW=cleVNW.

What about the union of two subspaces?

V = {(x,0) where x € R}

W = {(0,y) wherey € R}

(1,0) e VUW

0,1) e VUW

But (1,0) +(0,1) = (1,1) and VU W. So it is not a subspace of R2.

Section 4.4 - Spanning Sets and Linear Independence

A vector V in a vector space V is called a linear combination of the vectors
U1,U3,...,Ux if V can be written in the form V = c1U7 + C2U2 +...+CkU; where ¢1,Ca, ...
are scalars.

Example: V = M3»

08 02 13 ., =20

V = U7 = U = U3 =
21 10 1 2 1 3
V = c4U7 + CoU7 + C3U3
0 8 _ —02—203 201+3Cz
2 1 Ci1+Cr+C3 2Cr+3C3
0 -1 -220 100 1
2 3 0 8 010 2
, row echelon form:
1 1 1 2 001 1
0 2 31 000 O
2 -1 -
So 0 8 _1 0 Lo 3 B 2 0
21 10 1 2 1 3

Spanning sets:
Let S = {V1,V3,...,V; } be a subspace of a vector space V. The set Sis called a



spanning set of V if every vector in the vector space V can be written as a linear
combination of vectors in S. In such cases, we say that S spans V.

Example: The set S = {(1,0,0),(0,1,0),(0,0,1)} spans R? since every vector
T = (ug,Uz,uz) = ug(1,0,0) +u2(0,1,0) +uz(0,0,1).

S =4(1,2,3),(0,1,2),(-1,0,1)
(U1 —Us,2U1 + U2,3U1 + U2 + U3)

10 -1
detf 2 1 0 =0
32 1

Therefore, S is not a spanning set.

A set of vectors S = {vi,V2,...,Vg} in @ vector space V is called linearly

independant if the vector equation ¢iV7 + C2V3 +... Vs = 0 has only the trivial solution
c1 =0,c2=0,...,ck = 0. If not, then S is linearly dependant.

Example: Determine whether the set S = {(1,2,3),(0,1,2),(-2,0,1)} is dependant
or not.

_)
1V1 4 CoVp +...+CkVk = O

10 -20 1000
21 0 0 ,rowechelonform: 0 1 0 0
32 10 0010

Theorem: AsetS = {V1,V,,..., Vi ),k > 2 is linearly dependant if and only if at
least one of the vectors v; can be written as a linear combination of the other vectors.

CLV3 + CaVa +...+CVr = 0

Without loss of generality (WLG), suppose c; + 0.

Vi (V24 Vo v Ve Ck =
C1V1 = —C2V2 —...—CkVk, SO V1 = —E—in —. -_v—th-
ConverseW, if V_)l = CZV_Z) +... +CkV_)k - W — CZW _— _CkV_)k =0

Therefore, if a ¢, # 0, then the equation is dependant.

Two vectors are linearly dependant if one is a scalar multiple of the other.
S=4(1,1,1),(2,2,2)} is a linearly dependant set.

Section 4.5 - Basis and Dimensions



A set of vectors S = {vi,Vvz,...,Vn} in a vector space V is called a b asis for V if the
following conditions are true:

1. SspansV

2. S is linearly independent

- A standard basis for R? is {e11,€2,...,en where e; = (0,0,...,1,...,0)
- A monstandard basis for R? is S = {(1,2),(2,1)}

s
i,],k

The standard basis is

For P, (polynomials degree < n), a standard basis is {1,x,x?,...,x"1,x"}
10 01 00 0O

For M3, ) ) )
00 00 10 01

*Theorem: If S = {v1,V2,...,Vn} iS a basis for a space V. Then every vector in V can
be written in one and only one way as linear combinations of vectors in S.

Proof: Let U € V. Then, there exist ¢1,Cz,...,Cn : U = C1V1 + CaV2 +...+CnVp.
(Spanning set)
Suppose u = byvy + bavy +...+bpve. Then
(c1— b1)V1 +(C2 — bz)Vz +...+(Cph — bn)Vn =0.
But S is a basis, therefore it is linearly independent. So
c1—bi1 =c2—by =cn—b, =0. Therefore, ¢c; = b; foreveryi € {1,...,n}.
Consequently, the representation is unique.

*Theorem: If S = {vi1,v2,...,Vn} iS & basis for vector space V, then every set
containing more than n vectors in V is linearly dependent.

Corollary: If a vector space V has one basis with n vectors, then every basis for the
vector space has the same number of elements.

If a vector space V has a basis consisting of n vectors, then the number n is called
the dimension of V, denoted by dim(V) = n.

Examples: dim(R") = n; dim(Myn) = mxn

V = subspace of symmetric matrices in M2
dim(V) =3

) 10 01 00O
basis: : .
00 10 01



Theorem: Let V be a vector space of dimension n.

1. If S = {vy,...,vn} is a linearly independent set of vectors in V, then S is a basis
for V.

2.1f S = {vy,v2,...,vh} spans V, then S is a basis for V.

Section 4.6 - Rank of a Matrix and Systems of Linear Equations

Let A be a m x n matrix.

1. The row space of A is the subspace of R" spanned by the row vectors of A.

2. The column space of A is the subspace of R™ spanned by the column vectors of
A.

If Ais an m x n matrix, then the row space and column space of A have the same
dimensions.

The dimension of the row space or the column space is called the rank of matrix A.

Rank is denoted by rank(A).

Example: Find the rank of the matrix A given by

1 -20 1 100 -7
A= 2 1 5 -3 [, rowechelon form: 010 4
0 1 3 5 001 3
The dimension is 3, so the rank is 3.
1 -20 1
2 1 5 -3 |, rank:3
0 1 35

If Ais am m x n matrix, then the set of all solutions of the homogenous system of
linear equations Ax = 0 is a subspace of R", called the null space of A, denoted by
N(A). N(A) = {x € R" : Ax = 0}. The dimension of the null space of A is called the
nullity of A.

2 1 X 0 |.
Example 1: [ ][ ] = [ ] is a null space.
11 y 0

N(A) = {(0,0)}
nullity(A) =0



ez 12 ]3]0

N(A) = {(-2t,1),t € R}
nullity(A) = 1

If Ais a m x n matrix of rank r, then n = rank(A) + nullity(A).

For square matrices:

If A'is an n x n matrix, then the following conditions are equivalent:
1. Ais invertable

2. det(A) # 0
3. Ax = b has a unique solution for any n x 1 matrix b which is x = A=b
4. Rank(A) =n

5. nullity(A) =0

6. The n row vectors of A are linearly independent.

7. The n column vectors of A are linearly independent.



