Section 3.1 - The Determinant of a Matrix

Definition of the determinant of a 2×2 matrix:

The determinant of the matrix A

$$A = \begin{array}{ccc} a_{11} & a_{12} \\ a_{21} & a_{22} \end{array}$$

is given by $det(A) = a_{11}a_{22} - a_{12}a_{21}$

Definition of Minors and Cofactors of a matrix:

If A is a square matrix, then the minor M_{ij} of the element a_{ij} is the determinant of the matrix obtained by deleting the i^{th} row and j^{th} column of A.

The cofactor C_{ii} is given by $C_{ii} = (-1)^{i+j} M_{ii}$.

Definition of the determinant of a matrix:

If A is a square matrix (of order 2 or greater), then the determinant of A is the sum of the entries in any row or any column, multiplied by their cofactors.

That is: $\det(A) = |A| = \sum_{j=1}^{n} a_{cj} = a_{i1}c_{i1} + a_{i2}c_{i2} + a_{i3}c_{i3} + ... + a_{in}c_{in} < -i^{th}$ row expansion

or
$$\det(A) = |A| = \sum_{i=1}^{n} a_{ij}c_{ij} = a_{ij}c_{ij} + a_{2j}c_{2j} + ... + a_{nj}c_{nj} < -j^{th}$$
 row expansion

Example:
$$A=$$
 $\begin{bmatrix} 0 & 2 & 1 \\ 3 & -1 & 2 \end{bmatrix}$ $=$ $\begin{bmatrix} a_{ij} \end{bmatrix}$ where $1 \leq i \leq 3$ and $1 \leq j \leq 3$ $4 \quad 0 \quad 1$

minor of
$$a_{21} = 3$$
 is: $M_{21} = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} = 2$
cofactor of $a_{21} = 3$ is: $C_{21} = (-1)^{2+1} M_{21} = (-1)^3 * 2 = -2$

Expansion with respect to the second row:

$$\det(A) = |A| = 3C_{21} - 1C_{22} + 2C_{23}$$

$$= 3(-2) + (-1)(-1)^{2+2} \begin{array}{ccc} 0 & 1 \\ 4 & 1 \end{array} + 2(-1)^{2+3} \begin{array}{ccc} 0 & 2 \\ 4 & 0 \end{array} = 3(-2) + 4 + 16 = 14$$

Example:

 3×3 shortcut

$$0 2 1 0 2$$

 $3 -1 2 \Rightarrow 3 -1 \Rightarrow (0+16+0)-(-4+0+6) = 14$
 $4 0 1 4 0$

Theorem: Determinant of a triangular matrix:

If A is a triangular matrix of order n, then its determinant is the product of the entries on the main diagonal.

That is, the $det(A) = a_{11} + a_{22} + a_{33} + a_{mm}$

Example:
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & 4 & 5 \\ 0 & 0 & 2 \end{pmatrix} \det(A) = 8$$

Section 3.2 - Evaluation of a Determinant Using Elementary Operations Let A and B be square matrices.

- 1. If B is obtained from A by interchanging two rows or two columns of A, then det(B) = -det(A)
- 2. If B is obtained from A by adding a multiple of a row or column of A to another row or column of A, then det(B) = det(A)
- 3. If B is obtained from A by multiplying a row or a column of A by a non-zero constant c, then det(B) = c * det(A)
 - 4. If A is an $n \times n$ matrix, and c is a nonzero scalar, then $\det(cA) = c^n \det(A)$

Theorem: If the determinant of a matrix is zero, then it is invertable

The determinant of the matrix is 0 if:

- 1. An entire row or column consists of zeros
- 2. Two rows or columns are equal
- 3. One row or column is a multiple of another row or column

Section 3.3 - Properties of Determinants

If A and B are square matrices of order n and c is a scalar, then

$$1. \det(AB) = \det(A) \det(B)$$

$$2. \det(cA) = c^n \det(A)$$

Example:

$$10 -20 40$$

$$A = 30 0 50$$

$$-20$$
 -30 10

$$1 -2 4$$

$$A' = 3 \quad 0 \quad 5$$

$$-2$$
 -3 10

$$A = 10A'$$

$$\det(A') = 5$$

$$\det(A) = 1000$$

Note that $det(A + B) \neq det(A) + det(B)$

Important theorem: A square matrix A is invertable if and only if $\det(A) \neq 0$ Therefore, $\det(A^{-1}) = \frac{1}{\det(A)}$

Proof: A is invertable. There is an A^{-1} such that

$$AA^{-1} = A^{-1}A = I \Rightarrow \det(AA^{-1}) = I \Rightarrow \det(A)\det(A^{-1}) = I$$

So
$$\det(A^{-1}) = \frac{1}{\det(A)}$$

If A is a square matrix, then $det(A) = det(A^T)$

Section 3.5 - Applications of Determinants

1. Cramer's Rule:

$$a_{11}x_1 + a_{12}x_2 = b_1$$

$$a_{21}x_1 + a_{22}x_2 = b_2$$

$$x_{1} = \frac{\det \begin{pmatrix} b_{1} & a_{12} \\ b_{2} & a_{22} \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}$$

$$x_{2} = \frac{\det \begin{pmatrix} a_{11} & b_{1} \\ a_{21} & b_{2} \end{pmatrix}}{\det \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}}$$

Example:

$$(\cos \theta)x + (\sin \theta)y = 1$$

$$(-\sin \theta)x + (\cos \theta)y = 1$$

$$x = \frac{\det \begin{pmatrix} 1 & \sin \theta \\ 1 & \cos \theta \end{pmatrix}}{\det \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}} = \frac{\frac{\cos \theta - \sin \theta}{\cos^2 \theta + \sin^2 \theta}}{\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}}$$

$$y = \frac{\det \begin{pmatrix} \cos \theta & 1 \\ -\sin \theta & 1 \end{pmatrix}}{\det \begin{pmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{pmatrix}} = \frac{\frac{\cos \theta + \sin \theta}{\cos^2 \theta + \sin^2 \theta}}{\frac{\cos^2 \theta + \sin^2 \theta}{\cos^2 \theta + \sin^2 \theta}}$$

Solution: $(\cos \theta - \sin \theta, \cos \theta + \sin \theta)$

General case:

$$a_{11}x_1 + a_{12}x_2 + ... + a_{1n}x_n = b_1$$

 $a_{21}x_1 + a_{22}x_2 + ... + a_{2n}x_n = b_2$
...
 $a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n$

$$x_{i} = \frac{\begin{pmatrix} a_{11} & a_{1(i-1)} & b_{1} & b_{1(i-1)} & a_{n} \\ a_{21} & a_{2(i-2)} & b_{2} & b_{2(i-2)} & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n(i-n)} & b_{n} & b_{n(i-n)} & a_{nn} \end{pmatrix}}{\begin{pmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{pmatrix}}$$

2. Area of a triangle in the xy plane

The area of the triangle whose vertices are $(x_1, y_1), (x_2, y_2)$ and (x_3, y_3) is given by:

$$A = \pm \frac{1}{2} \det \begin{pmatrix} x_1 & y_1 & 1 \\ x_2 & y_2 & 1 \\ x_3 & y_3 & 1 \end{pmatrix}$$

Corollary: Three points are colinear if the area of the triangle is zero.

The equation of the line passing through the distinct points (x_1,y_1) and (x_2,y_2) is given by

The volume of the tetrahedron whose vertices are (x_1, y_1, z_1) , (x_2, y_2, z_2) , (x_3, y_3, z_3) , and (x_4, y_4, z_4) is given by

Volume =
$$\pm \frac{1}{6}$$
 $\begin{vmatrix} x_1 & y_1 & z_1 & 1 \\ x_2 & y_2 & z_2 & 1 \\ x_3 & y_3 & z_3 & 1 \\ x_4 & y_4 & z_4 & 1 \end{vmatrix}$

Corollary: Four points are coplanar if and only if the volume of them is zero.