
Section 1.0 - Principle of Mathematical Induction

Let Pn be a statement involving the positive integer n. If
1. P is true and
2. The truth of Pn implies the truth of Pn1 for every positive integer, then Pn is true for
all positive integers n.

Example:
Prove that 1  2  3 . . .n  nn1
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General:
A  n  n − 1 . . .1
2A  1  n  1  n . . .1  n
So 2A  1  n  1  n . . .1  n
Therefore, 2A  n1  n
Consequently, A  nn1
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Proof by induction:
Pn  1  2 . . .n  nn1
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1. n  1 is P1 true?
1?  111

2  1 so P1 is true
2. Suppose Pk is true. Prove for Pk1

Pk1  1  2 . . .k  1  k1k2
2

The assumption was that 1  2 . . .k  kk1
2

Proof by contradiction:
Prove that 2 is irrational
Suppose 2  p

q where p,q ∈ ℤ and q ≠ 0 and p
q is not reducable

2  p2

q2 , p2  2q2

p2 must be even
p must also be even
There exists an integer k such that p  2k
Therefore, 4k2  2q2 and 2k2  q2

Then, p and q must both be even
But if that is the case, p

q is reducable.

1.1 - Introduction to Systems of Linear Equations

A system of m linear equations in n variables is a set of m equations, each of which is
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linear in the same n variables.

a11x1  a12x2  a13x3 . . .a1nxn  b1

a21x1  a22x2  a23x3 . . .a2nxn  b2

a31x1  a32x2  a33x3 . . .a3nxn  b3

...
am1x1  am2x2  am3x3 . . .amnxn  bm

aij  (ith equation, jth variable)

Example:
x  y  z  3
2x  4y  5z  7
5x − 7y − 5z  2

Definition: A system of linear equations is consistant if it has at least one solution, and
it is inconsistant if it has no solution.

There are three cases:
1. The system has exactly one solution (consistant system)
2. The system has an infinite number of solutions (consistant system)
3. The system has no solutions (inconsistant system)

Example:
a) x  y  3 and x − y  −1
1  2  2x  2  x  1
from 1 we have y  3 − x  3 − 1  2
Solution: 1,2

b) x  y  3 and 2x  2y  6
There are infinately many solutions because they are the same equation

c) x  y  3 and x  y  1
There are no solutions. These equations are parallel lines.

2x  7y  5
3y  4
This is in row-echelon form. To solve it, use back substitution.

x − 2y  3z  9
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−x  3y  −4
2x − 5y  5z  17

Elementary row operations:
1. Two equations may be interchanged.
2. Both sides of an equation may be multiplied by a nonzero constant.
3. A multiple of an equation may be added to another equation.

Step 1:
x − 2y  3z  9
y  3z  5
2x − 5y  5z  17

Step 2:
x − 2y  3z  9
y  3z  5
−y − z  −1

Step 3:
x − 2y  3z  9  x  9  2y − 3z
y  3z  5  y  5 − 3z  −1
2z  4  z  2

The method above used to put the equation in row-echelon form is called Gaussian
Elimination.

1.2 - Gaussian Elimination and Gauss-Jordan Elimination

x  y  3
2x  2y  6
−21  2  x  y  3 and 0  0
Consistant system

Definition: If m and n are positive integers, then an m  n matrix is a rectangular array
in which each entry, aij, of the matrix is a number. An m  n matrix has m rows
(horizontal lines) and n columns (vertical lines).

A matrix is said to be a square matrix of order n if m  n. The entries a11,a22,anm are
called the main diagonal entries.

3



Size 3  3:
1 −1 

0 2 5
3 1 e

The main diagonals of this matrix are: 1,2,e

Size 1  4: 1 3 2 −1

Size 3  1:
1
2


A system of linear equations can be represented by using a matrix.

Example:
5x  3y − z  2
2x  y − 2z  0
2x − z  1

Coefficient matrix:
5 3 −1
2 1 −2
2 0 −1

Augmented Matrix
5 3 −1 2
2 1 −2 0
2 0 −1 1

Elementary Row Operations (Gaussian Elimination with back substitution):
Two matricies are said to be row-equivalent if one can be obtained from the other by a
sequence of elementary row operations.

1. Two equations may be interchanged.
2. Both sides of an equation may be multiplied by a nonzero constant.
3. A multiple of an equation may be added to another equation.
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Associated Augmented Matrix:
1 −2 3 9
−1 3 0 −4
2 −5 5 17



1 −2 3 9
0 1 3 5
2 −5 5 17



1 −2 3 9
0 1 3 5
0 −1 −1 −1



1 −2 3 9
0 1 3 5
0 0 2 4

1 −1 2 4
1 0 1 6
3 −3 5 4
3 2 −1 1



1 −1 2 4
0 1 −1 2
0 0 2 6
0 0 0 15

, Gaussian elimination:

1 −1 2 4
0 1 −1 2
0 0 −1 −8
0 0 0 −5

The last line tells us that 0  15. This is a contradiction, and therefore this is an
inconsistant system with no solutions.

Gauss-Jordan Elimination:
A matrix in row-echelon form is in reduced row echelon form if every column that has
a leading 1 has 0s in every position above and below its leading 1.

0 1 0 5
0 0 1 3
0 0 0 0

1 0 0 −1
0 1 0 2
0 0 1 3
0 0 0 0

Let us use Gauss-Jordan elimination to solve the system:
x − 2y  3z  9
−x  3y  −4
2x − 5y  5z  17

Gaussian Elimination:
1 −2 3 9
0 1 3 5
0 0 1 2

Jordan Elimination:
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1 0 9 19
0 1 3 5
0 0 1 2

1 0 0 1
0 1 0 −1
0 0 1 2

1.3 - Applications of Systems of Linear Equations

Suppose a collection of data is represented by n points x1,y1, x2,y2, . . . , xn,yn in
the xy plane, and you are asked to find a polynomial function
px  a0  a1x . . .an−1xn−1 of degree n − 1 whose graph passes through the given
points. This procedure is called polynomial curve fitting.

Example: Determine the polynomial px  a0  a1x  a2x2 whose graph passes
through the points 1,4, 2,0, 3,12
a0  1a1  a2  4
a0  2a1  4a2  0
a0  3a1  9a2  12

a0  24
a1  −28
a2  8
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