Section 1.0 - Principle of Mathematical Induction

Let P_n be a statement involving the positive integer n. If

1. P is true and

2. The truth of P_n implies the truth of P_{n+1} for every positive integer, then P_n is true for all positive integers n.

Example:

Prove that $1 + 2 + 3 + ... + n = \frac{n(n+1)}{2}$

General:

A = n + (n - 1) + ... + 1 2A = (1 + n) + (1 + n) + ... + (1 + n)So 2A = (1 + n) + (1 + n) + ... + (1 + n)Therefore, 2A = n(1 + n)Consequently, $A = \frac{n(n+1)}{2}$

Proof by induction:

 $P_{n} = 1 + 2 + ... + n = \frac{n(n+1)}{2}$ 1. n = 1 is P_{1} true? 1? $= \frac{1(1+1)}{2} = 1$ so P_{1} is true 2. Suppose P_{k} is true. Prove for P_{k+1} $P_{k+1} = 1 + 2 + ... + (k+1) = \frac{(k+1)(k+2)}{2}$ The assumption was that $1 + 2 + ... k = \frac{k(k+1)}{2}$

Proof by contradiction: Prove that $\sqrt{2}$ is irrational Suppose $\sqrt{2} = \frac{p}{q}$ where $p, q \in \mathbb{Z}$ and $q \neq 0$ and $\frac{p}{q}$ is not reducable $2 = \frac{p^2}{q^2}, p^2 = 2q^2$ p^2 must be even p must also be even There exists an integer k such that p = 2kTherefore, $4k^2 = 2q^2$ and $2k^2 = q^2$ Then, p and q must both be even But if that is the case, $\frac{p}{q}$ is reducable.

1.1 - Introduction to Systems of Linear Equations

A system of m linear equations in n variables is a set of m equations, each of which is

linear in the same n variables.

 $a_{11}x_1 + a_{12}x_2 + a_{13}x_3 + \dots + a_{1n}x_n = b_1$ $a_{21}x_1 + a_{22}x_2 + a_{23}x_3 + \dots + a_{2n}x_n = b_2$ $a_{31}x_1 + a_{32}x_2 + a_{33}x_3 + \dots + a_{3n}x_n = b_3$... $a_{m1}x_1 + a_{m2}x_2 + a_{m3}x_3 + \dots + a_{mn}x_n = b_m$

 $a_{ij} = (ith equation, jth variable)$

Example:

x + y + z = 3 2x + 4y + 5z = 75x - 7y - 5z = 2

Definition: A system of linear equations is *consistant* if it has at least one solution, and it is *inconsistant* if it has no solution.

There are three cases:

- 1. The system has exactly one solution (consistant system)
- 2. The system has an infinite number of solutions (consistant system)
- 3. The system has no solutions (inconsistant system)

Example:

a) x + y = 3 and x - y = -1(1) + (2) $\Rightarrow 2x = 2 \Rightarrow x = 1$ from (1) we have y = 3 - x = 3 - 1 = 2Solution: (1,2)

b) x + y = 3 and 2x + 2y = 6There are infinately many solutions because they are the same equation

c) x + y = 3 and x + y = 1There are no solutions. These equations are parallel lines.

2x + 7y = 53y = 4This is in row-echelon form. To solve it, use *back substitution*.

x - 2y + 3z = 9

-x + 3y = -42x - 5y + 5z = 17

Elementary row operations:

1. Two equations may be interchanged.

2. Both sides of an equation may be multiplied by a nonzero constant.

3. A multiple of an equation may be added to another equation.

Step 1: x - 2y + 3z = 9y + 3z = 5

2x - 5y + 5z = 17

Step 2:

x - 2y + 3z = 9y + 3z = 5-y - z = -1

Step 3:

 $x - 2y + 3z = 9 \Rightarrow x = 9 + 2y - 3z$ $y + 3z = 5 \Rightarrow y = 5 - 3z = -1$ $2z = 4 \Rightarrow z = 2$

The method above used to put the equation in row-echelon form is called *Gaussian Elimination*.

1.2 - Gaussian Elimination and Gauss-Jordan Elimination

x + y = 3 2x + 2y = 6 $-2(1) + (2) \Rightarrow x + y = 3 \text{ and } 0 = 0$ Consistant system

Definition: If m and n are positive integers, then an $m \times n$ matrix is a rectangular array in which each *entry*, a_{ij} , of the matrix is a number. An $m \times n$ matrix has *m* rows (horizontal lines) and *n* columns (vertical lines).

A matrix is said to be a square matrix of order *n* if m = n. The entries a_{11}, a_{22}, a_{nm} are called the main diagonal entries.

Size 3×1 : 2 π

A system of linear equations can be represented by using a matrix.

Example: 5x + 3y - z = 2 2x + y - 2z = 02x - z = 1

Coefficient matrix:

- 5 3 -1
- 2 1 -2
- 2 0 -1

Augmented Matrix

- 5 3 -1 2
- $2 \ 1 \ -2 \ 0$
- $2 \ 0 \ -1 \ 1$

Elementary Row Operations (Gaussian Elimination with back substitution):

Two matricies are said to be row-equivalent if one can be obtained from the other by a sequence of elementary row operations.

- 1. Two equations may be interchanged.
- 2. Both sides of an equation may be multiplied by a nonzero constant.
- 3. A multiple of an equation may be added to another equation.

Associated Augmented Matrix:

1	-2	3	9		1	-2	3	9		1	-2	3	9		1	-2	3	9	
-1	3	0	-4	\Rightarrow	0	1	3	5	\Rightarrow	0	1	3	5	\Rightarrow	0	1	3	5	
2	-5	5	17		2	-5	5	17		0	-1	-1	-1		0	0	2	4	
1	-1	2	4	⇒	1	-1	2	4	0		unaion	olim	nination		1	-1	2	,	4
1	0	1	6		0	1	-1	2		~~~~				ioni	0	1	-1	1	2
3	-3	5	4		0	0	2	6	, Ga	aus	Sidii	ein	emmation		0	0	-]	1	-8
3	2	-1	1		0	0	0	15								0	0		-5

The last line tells us that 0 = 15. This is a contradiction, and therefore this is an inconsistant system with no solutions.

Gauss-Jordan Elimination:

A matrix in row-echelon form is in reduced row echelon form if every column that has a leading 1 has 0s in every position above and below its leading 1.

Let us use Gauss-Jordan elimination to solve the system:

x - 2y + 3z = 9-x + 3y = -42x - 5y + 5z = 17

Gaussian Elimination:

Jordan Elimination:

1.3 - Applications of Systems of Linear Equations

Suppose a collection of data is represented by *n* points $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ in the xy plane, and you are asked to find a polynomial function $p(x) = a_0 + a_1x + \ldots + a_{n-1}x^{n-1}$ of degree n - 1 whose graph passes through the given points. This procedure is called *polynomial curve fitting*.

Example: Determine the polynomial $p(x) = a_0 + a_1x + a_2x^2$ whose graph passes through the points (1,4), (2,0), (3,12)

 $a_{0} + 1a_{1} + a_{2} = 4$ $a_{0} + 2a_{1} + 4a_{2} = 0$ $a_{0} + 3a_{1} + 9a_{2} = 12$ $a_{0} = 24$ $a_{1} = -28$ $a_{2} = 8$